Назначение неподвижного закрепления трубопроводов в отдельных точках заключается в распределении температурных удлинений между отдельными компенсирующими устройствами и в уравновешивании осевых усилий в трубопроводе.
От правильного размещения неподвижных закреплений по длине трассы трубопровода во многом зависит величина температурных усилий и напряжений в трубах. Уменьшение последних всегда желательно, так как повышает эксплуатационную надежность теплопроводов. Поэтому при проектировании следует уделять большое внимание рациональному распределению неподвижных опор по трассе теплопроводов, а также их расчету на прочность.
[adsense1]
Однако в общем случае невозможно рекомендовать какие-либо готовые решения, касающиеся разбивки неподвижных точек на проектируемом трубопроводе, а также выбора геометрических схем и оптимальной длины самокомпенсирующихся участков.
В частных случаях, например в теплопроводах с сальниковыми компенсаторами, практикой проектирования установлены предельные расстояния между компенсаторами и неподвижными точками. Для канальных подземных прокладок могут быть рекомендованы следующие расстояния:
Условный диаметр труб dy в мм |
100 |
150 |
200 |
250 |
300 |
600 |
Расстояния в м |
80 |
100 |
120 |
130 |
150 |
160 |
В бесканальных теплопроводах предельные расстояния назначаются по расчету.
Неподвижные опоры в зависимости от действующих усилий разделяются на неразгруженные и разгруженные.
Неразгруженные опоры воспринимают и уравновешивают осевые усилия, вызванные гидростатическим давлением теплоносителя. Эти усилия зависят от диаметра труб и могут достигать очень больших величин.
Разгруженные опоры свободны от усилий, вызванных гидростатическим давлением.
Неразгруженные опоры, как правило, характерны для теплопроводов с сальниковыми компенсаторами, разгруженные — для теплопроводов с гибкими (П-образными или др.) компенсаторами, а также для участков теплопроводов с самокомпенсацией.
Конструкции неподвижных опор состоят из двух основных элементов: несущих конструкций (балок, железобетонных плит), на которые передаются усилия от трубопроводов, и собственно опор, при помощи которых осуществляется неподвижное закрепление труб (приварные косынки, хомуты).
Неподвижные опоры имеют следующие конструктивные варианты:
а) разъемные с хомутами на резьбовых соединениях;
б) неразъемные с непосредственной приваркой труб к несущим конструкциям опор;
в) неразъемные с приварными упорами;
г) щитовые из железобетонных плит (для подземных теплопроводов).
Неподвижная опора для труб dy<= 100 мм
1 —- хомут из круглой стали;
2 — приварные упоры из угловой стали;
3 — опорная конструкция (консоль, заделанная в стену)
На рисунке изображено неподвижное закрепление, применяемое для труб dy<100 мм и рассчитанное на осевые усилия не более 700 кГ. Глубина заделки консоли в кирпичные стены должна быть не менее 380 мм. Отверстие в стене после установки консоли должно быть тщательно заделано цементным раствором состава 1 :4.
Неподвижная опора для труб dy= 125 — 300 мм
1 — хомут из круглой стали;
2 — приварные упоры;
3 — консоль из швеллера;
4 — вертикальные упоры, распределяющие нагрузку;
5 — шпилька для крепления консоли к стене.
На рисунке показано крепление к стенам консолей для неподвижных закреплений теплопроводов dу = 125-300 мм, рассчитанное на осевые усилия до 4000 кГ и вертикальную нагрузку (от веса труб) не более 1600 кГ.
На консоли действуют изгибающие моменты одновременно в двух плоскостях, что вызывает необходимость в устройстве упоров, распределяющих нагрузку на большую площадь стены. Плотное прижатие упоров к стене достигается затяжкой сквозной шпильки.
[adsense2]