Одной из основных особенностей теплопроводов является относительно высокая температура транспортируемого по ним продукта — воды или пара, в большинстве случаев превышающая 100°С, что в значительной мере предопределяет характер конструкций тепловых сетей, так как требует устройства тепловой изоляции и обеспечения свободы перемещений труб при их нагревании или охлаждении.

Наличие тепловой изоляции и требование свободного перемещения труб значительно усложняет конструкцию теплопроводов — последние укладывают в каналах, туннелях или защитных оболочках.

Периодический нагрев стенок теплопроводов до температуры 130—150°С делают непригодными противокоррозийные покрытия, обычно применяемые для защиты ненагретых стальных трубопроводов, прокладываемых в грунте. Для защиты теплопроводов от наружной коррозии необходимо применение таких строительно-изоляционных конструкций, которые препятствую проникновению к трубопроводам грунтовой влаги.

Применяемые в настоящее время конструкции теплопроводов отличаются значительным разнообразием. По способу прокладки тепловые сети делятся на подземные и надземные (воздушные).

Подземная прокладка трубопроводов тепловых сетей выполняется:

а) в непроходных и полупроходных каналах;

б) в туннелях или коллекторах совместно с другими коммуникациями;

в) в оболочках различной формы и в виде засыпных прокладок.

При подземной прокладке вдоль трассы сооружаются камеры, ниши для компенсаторов, неподвижные опоры и пр.

Надземная прокладка трубопроводов тепловых сетей выполняется:

а) на эстакадах со сплошным пролетным строением;

б) на отдельно стоящих мачтах (опорах);

в) на подвесных пролетных строениях (вантовые).

К особой группе конструкций относятся специальные сооружения: подводные, надземные и подземные переходы и ряд других.

Основными недостатками применяемых в строительстве подземных конструкций теплопроводов являются: недолговечность, большие тепловые потери, трудоемкость изготовления, значительный расход строительных материалов и высокая строительная стоимость.

Наибольшее применение получили сборные конструкции непроходных каналов с бетонными стенками. Применение непроходных каналов оправдывается в случае прокладки тепловых сетей в мокрых грунтах при условии устройства попутного дренажа. Следует ориентироваться на применение непроходных каналов, выполняемых из унифицированных сборных железобетонных деталей. Указанные железобетонные каналы могут быть применены для тепловых сетей диаметром до 600 мм. Возможно применение непроходных каналов, собираемых из вибропрокатных плит.

Непроходные каналы с подвесной теплоизоляцией, образующей вокруг труб воздушную прослойку, незаменимы на участках трассы с самокомпенсацией тепловых удлинений теплопроводов. Характерной особенностью канальной прокладки тепловых сетей в отличие от бесканальной является обеспечение перемещений теплопроводов в продольном и поперечном направлениях.

При прокладке теплопроводов под проездами с интенсивным уличным движением и усовершенствованным дорожным покрытием применяются полупроходные каналы из сборных железобетонных деталей. При прокладке большого количества теплопроводов значительных диаметров применяются проходные туннели.

Для тепломагистралей больших диаметров также имеются типовые конструкции каналов, положительно зарекомендовавшие себя как в строительстве, так и эксплуатации. Например, в Москве сооружаются тепломагистрали диаметром 700—1200 мм. Однако конструкции каналов должны совершенствоваться до получения более рациональных решений. Для прокладки теплопроводов используются сборные железобетонные каналы одноячейкового и двухъячейкового сечений. В основном эти каналы проектируются полупроходного типа для возможности осмотра их обслуживающим персоналом, а также обеспечения максимальной надежности тепломагистралей в эксплуатации.

В Москве и некоторых других городах получила применение бесканальная прокладка теплопроводов с двухслойной цилиндрической оболочкой, состоящей из железобетонной трубы и теплоизоляционного слоя (минеральной ваты).

Железобетонные трубы обладают достаточной механической прочностью, высокой сопротивляемостью ударным и вибрационным нагрузкам, хорошей влагонепроницаемостью. Поэтому они надежно защищают теплопровод от воздействия влаги и нагрузок, передаваемых грунтом. Тем самым достигаются более благоприятные условия для работы теплопроводов: снижаются напряжения в стенках труб и обеспечивается долговечность тепловой изоляции.

Наружная железобетонная оболочка остается неподвижной при перемещении теплопровода в осевом направлении вследствие температурных деформаций, что отличает данную конструкцию от конструкции с армопенобетонной оболочкой, перемещающейся о грунте вместе с теплопроводом.

Аналогичная конструкция выполняется и с применением в качестве наружной оболочки асбестоцементных труб и железобетонных полуцилиндров.

Применение бесканальных конструкций может быть рекомендовано при прокладке в сухих грунтах с защитой наружной поверхности теплопроводов двумя слоями изола. Бесканальная прокладка теплопроводов с засыпной теплоизоляцией торфом, диатомовой крошкой и др. оказалась неудачной. В настоящее время ведутся экспериментальные работы по созданию материала засыпки.

Конструкции камер, применяемые при строительстве тепловых сетей, отличаются большим многообразием. Сборные камеры из железобетонных деталей разработаны для теплопроводов малых и средних диаметров. Камеры больших размеров выполняются из бетонных блоков и монолитного железобетона. Конструкции неподвижных опор в каналах выполняются из монолитного, а также сборного железобетона. В Москве, Новосибирске и других городах значительное распространение получили так называемые общие коллекторы, в которых теплопроводы прокладываются совместно с электрическими и телефонными кабелями, водопроводными и другими подземными сетями.

Проходные каналы и общие коллекторы оборудуются электрическим освещением, телефонной связью, вентиляцией, различными приборами автоматического управления и средствами водоотлива.

В вентилируемых проходных туннелях обеспечивается благоприятный температурно-влажностный режим воздушной среды, который способствует хорошей сохранности теплопроводов.

При строительстве общих коллекторов в Москве открытым способом работ хорошо зарекомендовала себя конструкция из крупных ребристых железобетонных блоков, предложенная инженерами Н. М. Давидянцом и А. А. Ляминым.

Способ совместной прокладки подземных сетей в общих коллекторах имеет целый ряд преимуществ, из которых наиболее существенными являются: повышение долговечности материальной части сетей и обеспечение наилучших условий эксплуатации. При эксплуатации тепловых сетей в коллекторах, а также при необходимости строительства новых подземных сетей не требуется вскрытия городских территорий для проведения ремонта. Размещение сетей различного назначения в коллекторах позволяет организовать их комплексное и плановое проектирование, строительство и эксплуатацию и дает возможность упорядочить всю систему размещения подземных сетей более компактно как в плане, так и в поперечном сечении городских проездов. Подземные городские коллекторы представляют собой современные инженерные сооружения.

Поперечные сечения проездов при прокладке коммуникаций

а — раздельной;

б — совместной;

ТК —телефонная канализация;

Э — электрические кабели;

Т — теплопроводы 2d = 400 мм;

Г — газопровод d=300 мм

В — водопровод d =300 мм;

С — водосток d= 600 мм;

К — канализация d =200 мм;

ТКАБ — телефонные кабели

Внутренний вид общего коллектора

Количество трубопроводов и кабелей, размещаемых в коллекторах различных сечений

Проектирование подземных, надземных и подводных переходов теплопроводов через естественные и искусственные препятствия входит в общий комплекс проектирования тепловых сетей и только в редких случаях выполняется специализированными организациями.

Подводные переходы через реки выполняются в виде проходных туннелей и дюкеров; воздушные переходы через реки к железнодорожные пути — в виде мостовых переходов. Возможна прокладка теплопроводов и по существующим мостам и путепроводам.

При пересечении трассой тепловых сетей железных и автомобильных дорог, а также городских проездов чаще всего сооружаются подземные переходы, осуществляемые закрытым способом для обеспечения бесперебойной эксплуатации дорог.

Подземные переходы выполняются главным образом в виде туннелей, сооружаемых при помощи металлических щитов круглого сечения. Эти туннели требуют значительного заглубления, а поэтому часто попадают в зону грунтовых вод, что осложняет производство работ и требует организации водоотлива из туннеля во время эксплуатации.

Другим видом подземного перехода является прокладка стальных футляров, внутри которых размещаются теплопроводы. Футляры прокладываются путем продавливания или прокола стальных труб гидравлическими домкратами. Осуществление этого вида переходов целесообразно там, где возможно пройти выше уровня грунтовых вод, не нарушая существующих подземных коммуникаций.

Подземные переходы из стальных футляров широко применяются в строительстве тепловых сетей.

Правильный выбор того или иного вида перехода составляет основную задачу при проектировании, поскольку стоимость этих сооружений весьма высокая и значительно увеличивает общую стоимость тепловых сетей.

На промышленных предприятиях большое распространение получила надземная прокладка теплопроводов по эстакадам, выполняемым часто из прокатного металла.

Проектирование эстакад с применением сборного железобетона в настоящее время существенно облегчается в связи с выпуском типового проекта «Унифицированные сборные железобетонные отдельно стоящие опоры под технологические трубопроводы» (серия ИС-01-06).

В городских тепловых сетях надземная прокладка теплопроводов выполнялась главным образом по металлическим мачтам решетчатой конструкции. Железобетонные мачты начали изготовляться только в настоящее время. Так, например, железобетонные мачты из сборных деталей для тепловых магистралей диаметром 1200 мм нашли применение в Москве. Детали конструкций этих мачт изготовляются на заводе и собираются на трассе.